A look behind the scenes: Improving size recommendation accuracy for Virtusize users with high BMI!

A look behind the scenes: Improving size recommendation accuracy for Virtusize users with high BMI!

A look behind the scenes: Improving size recommendation accuracy for Virtusize users with high BMI!

Introduction

Accurately recommending sizes on apparel sites plays an important role in improving customer satisfaction. Here at our company, Virutsize, we provide a virtual try-on service with the same name- ``Virtusize.'' It recommends the most suitable size based on product size data and physical information provided by the customer. In order to recommend an accurate size, our in-house data science team verifies results on a daily basis, regularly preforming brush-ups to improve accuracy.

In this article, we will show examples of how we improve recommendation accuracy, and reveal the series of steps to improve accuracy for our users with a high BMI!

Model size comparison method

One of the types of recommendations we provide uses a model for size comparisons (the model-size comparison method). This is a method of making size recommendations to customers, using the body measurement of a client-provided model, along with which size fits that model best.

The data is assembled based on a model's physical information as well as the product information on what the model is wearing. This is especially effective for making suggestions for a-typical types of clothing such as: flowy, low-cut, and loose fitting items.

Finding the issue and forming a hypothesis

When comparing measurements using the model- size comparison method, it was found that the *size match rate of Virtusize users with a high BMI, was less accurate than those with a more generic body type. So we decided to review the logic behind the recommendations.

*A look back at changes over the last year and a half, in BMI value and size matching rates, when using the model-size comparison method.

Looking at this graph, the *size match rate decreases, as the BMI increases to 28 or higher. This makes it evident that the model size comparison method, is not very suitable for Virtusize users with a BMI of 28 or higher.

If you take a closer look at "model information" on the product page, used for the model size comparison method, you will find that most of the models are listed as having a standard body shape. This means wearing items such as "S", "M", and "L". However, there isn't a lot of information on models who actually wear sizes larger than that. For example, 2XL or 3XL, which are worn by users with high BMI. But, it is true that finding models to cover all sizes larger than 2XL could be costly and unrealistic for companies.

Because of the limited range of model information that we can obtain, Virtusize has come to the conclusion that internally, we need to apply a different logic to high BMI, users than the model size comparison method. However, as we said at the beginning, the model size comparison method is still a very good recommendation logic for users with general body types! Plus- changing the mechanisms of the entire site at once, ultimately, won't lead to improving the accuracy of the entire site.

Verifying the improvements and the end results

The in-house data science team conducted a study to apply the size comparison method to users with a typical body type, and to apply a different method to users with a high BMI. In the end, we were able to develop a mechanism that applies a different logic to those users instead of applying the model size comparison method.

After applying this new method, a report showed that the *size match rate of users with high BMI, (specifically with a BMI of 28 or higher) improved by up to 20% for each brand.

And even looking at the average of all brands, we can see an overall improvement in accuracy of 5.81%.

Conclusion

Even with this new method, we are continuously working to improve our product with the aim of making, "more accurate size recommendations." This time, we introduced a series of steps to improve accuracy for our users with high BMI, but this is still only one example of our work. We will continue to focus on different issues, and carefully optimize each item, one-by-one, in order to deliver a safe purchasing experience to more people than just users with more common body types.

Virtusize is continuously working to grow and improve. We look forward to showing you what we can do.

*Size match rate: This is a value that serves as our index for measuring the accuracy of the recommendation logic at our company. Of the products purchased after Virtusize was recommended…this is the percentage of products that were purchased in the size that Virtusize recommended first.

Introduction

Accurately recommending sizes on apparel sites plays an important role in improving customer satisfaction. Here at our company, Virutsize, we provide a virtual try-on service with the same name- ``Virtusize.'' It recommends the most suitable size based on product size data and physical information provided by the customer. In order to recommend an accurate size, our in-house data science team verifies results on a daily basis, regularly preforming brush-ups to improve accuracy.

In this article, we will show examples of how we improve recommendation accuracy, and reveal the series of steps to improve accuracy for our users with a high BMI!

Model size comparison method

One of the types of recommendations we provide uses a model for size comparisons (the model-size comparison method). This is a method of making size recommendations to customers, using the body measurement of a client-provided model, along with which size fits that model best.

The data is assembled based on a model's physical information as well as the product information on what the model is wearing. This is especially effective for making suggestions for a-typical types of clothing such as: flowy, low-cut, and loose fitting items.

Finding the issue and forming a hypothesis

When comparing measurements using the model- size comparison method, it was found that the *size match rate of Virtusize users with a high BMI, was less accurate than those with a more generic body type. So we decided to review the logic behind the recommendations.

*A look back at changes over the last year and a half, in BMI value and size matching rates, when using the model-size comparison method.

Looking at this graph, the *size match rate decreases, as the BMI increases to 28 or higher. This makes it evident that the model size comparison method, is not very suitable for Virtusize users with a BMI of 28 or higher.

If you take a closer look at "model information" on the product page, used for the model size comparison method, you will find that most of the models are listed as having a standard body shape. This means wearing items such as "S", "M", and "L". However, there isn't a lot of information on models who actually wear sizes larger than that. For example, 2XL or 3XL, which are worn by users with high BMI. But, it is true that finding models to cover all sizes larger than 2XL could be costly and unrealistic for companies.

Because of the limited range of model information that we can obtain, Virtusize has come to the conclusion that internally, we need to apply a different logic to high BMI, users than the model size comparison method. However, as we said at the beginning, the model size comparison method is still a very good recommendation logic for users with general body types! Plus- changing the mechanisms of the entire site at once, ultimately, won't lead to improving the accuracy of the entire site.

Verifying the improvements and the end results

The in-house data science team conducted a study to apply the size comparison method to users with a typical body type, and to apply a different method to users with a high BMI. In the end, we were able to develop a mechanism that applies a different logic to those users instead of applying the model size comparison method.

After applying this new method, a report showed that the *size match rate of users with high BMI, (specifically with a BMI of 28 or higher) improved by up to 20% for each brand.

And even looking at the average of all brands, we can see an overall improvement in accuracy of 5.81%.

Conclusion

Even with this new method, we are continuously working to improve our product with the aim of making, "more accurate size recommendations." This time, we introduced a series of steps to improve accuracy for our users with high BMI, but this is still only one example of our work. We will continue to focus on different issues, and carefully optimize each item, one-by-one, in order to deliver a safe purchasing experience to more people than just users with more common body types.

Virtusize is continuously working to grow and improve. We look forward to showing you what we can do.

*Size match rate: This is a value that serves as our index for measuring the accuracy of the recommendation logic at our company. Of the products purchased after Virtusize was recommended…this is the percentage of products that were purchased in the size that Virtusize recommended first.

Introduction

Accurately recommending sizes on apparel sites plays an important role in improving customer satisfaction. Here at our company, Virutsize, we provide a virtual try-on service with the same name- ``Virtusize.'' It recommends the most suitable size based on product size data and physical information provided by the customer. In order to recommend an accurate size, our in-house data science team verifies results on a daily basis, regularly preforming brush-ups to improve accuracy.

In this article, we will show examples of how we improve recommendation accuracy, and reveal the series of steps to improve accuracy for our users with a high BMI!

Model size comparison method

One of the types of recommendations we provide uses a model for size comparisons (the model-size comparison method). This is a method of making size recommendations to customers, using the body measurement of a client-provided model, along with which size fits that model best.

The data is assembled based on a model's physical information as well as the product information on what the model is wearing. This is especially effective for making suggestions for a-typical types of clothing such as: flowy, low-cut, and loose fitting items.

Finding the issue and forming a hypothesis

When comparing measurements using the model- size comparison method, it was found that the *size match rate of Virtusize users with a high BMI, was less accurate than those with a more generic body type. So we decided to review the logic behind the recommendations.

*A look back at changes over the last year and a half, in BMI value and size matching rates, when using the model-size comparison method.

Looking at this graph, the *size match rate decreases, as the BMI increases to 28 or higher. This makes it evident that the model size comparison method, is not very suitable for Virtusize users with a BMI of 28 or higher.

If you take a closer look at "model information" on the product page, used for the model size comparison method, you will find that most of the models are listed as having a standard body shape. This means wearing items such as "S", "M", and "L". However, there isn't a lot of information on models who actually wear sizes larger than that. For example, 2XL or 3XL, which are worn by users with high BMI. But, it is true that finding models to cover all sizes larger than 2XL could be costly and unrealistic for companies.

Because of the limited range of model information that we can obtain, Virtusize has come to the conclusion that internally, we need to apply a different logic to high BMI, users than the model size comparison method. However, as we said at the beginning, the model size comparison method is still a very good recommendation logic for users with general body types! Plus- changing the mechanisms of the entire site at once, ultimately, won't lead to improving the accuracy of the entire site.

Verifying the improvements and the end results

The in-house data science team conducted a study to apply the size comparison method to users with a typical body type, and to apply a different method to users with a high BMI. In the end, we were able to develop a mechanism that applies a different logic to those users instead of applying the model size comparison method.

After applying this new method, a report showed that the *size match rate of users with high BMI, (specifically with a BMI of 28 or higher) improved by up to 20% for each brand.

And even looking at the average of all brands, we can see an overall improvement in accuracy of 5.81%.

Conclusion

Even with this new method, we are continuously working to improve our product with the aim of making, "more accurate size recommendations." This time, we introduced a series of steps to improve accuracy for our users with high BMI, but this is still only one example of our work. We will continue to focus on different issues, and carefully optimize each item, one-by-one, in order to deliver a safe purchasing experience to more people than just users with more common body types.

Virtusize is continuously working to grow and improve. We look forward to showing you what we can do.

*Size match rate: This is a value that serves as our index for measuring the accuracy of the recommendation logic at our company. Of the products purchased after Virtusize was recommended…this is the percentage of products that were purchased in the size that Virtusize recommended first.

Tell us more about you to download

ありがとうございます!下のボタンより資料をダウンロードしてください。
ダウンロード
Oops! Something went wrong while submitting the form.
Thank you! Please download the file below.
Download a file
Oops! Something went wrong while submitting the form.
감사합니다! 파일을 다운로드해주세요!
파일 다운로드
Oops! Something went wrong while submitting the form.

Up next

オンライン試着のVirtusizeが独自分析!2024年AWアイテムの初動

バーチャル試着の「Virtusize」、ナチュラルな暮らしとおしゃれのセレクトショップ【ナチュラン】へ提供開始

バーチャル試着の「Virtusize」、サステナブルファッションをミッションにするセレクトショップ【HIRYU】へ提供開始

【Safari Lounge】Virtusize比較機能の利用/非利用でCVRに約9倍もの差がついています!

靴のオンライン試着サービス「Virtusize for Shoes」、対象カテゴリ「サンダル」を新たに追加

人気アイテムをベースにしたレコメンドサービスをトップページに表示できるようになりました!

New Partner - HIRYU

Safari Lounge - The conversion rate (CVR) is about nine times higher when using Virtusize's comparison feature compared to when it is not used!

Online Shoe Fitting Service "Virtusize for Shoes" Adds "Sandals" Category

New Recommendation Service Based on Popular Items Now Available on the Top Page!

New partner -LIFiLL-

[UNDER ARMOUR] Case study

온라인 시착 솔루션 "버처사이즈", 일본 전자상거래 사이트 HIRYU에 제공 시작

Safari Lounge - Virtusize 비교 기능을 사용할 때와 사용하지 않을 때의 CVR 차이는 약 9배에 달합니다!

온라인 신발 피팅 서비스 "Virtusize for Shoes", 대상 카테고리에 "샌들" 추가

인기 아이템을 기반으로 한 추천 서비스를 홈페이지에 표시할 수 있게 되었습니다!

Virtusize의 가상 피팅 솔루션, 오리지널 컷소 브랜드 【LIFiLL】에 제공 시작

온라인 시착 솔루션 "버처사이즈", 한국의 전자상거래 사이트 nugu에 제공 시작

A look behind the scenes: Improving size recommendation accuracy for Virtusize users with high BMI!

Introduction

Accurately recommending sizes on apparel sites plays an important role in improving customer satisfaction. Here at our company, Virutsize, we provide a virtual try-on service with the same name- ``Virtusize.'' It recommends the most suitable size based on product size data and physical information provided by the customer. In order to recommend an accurate size, our in-house data science team verifies results on a daily basis, regularly preforming brush-ups to improve accuracy.

In this article, we will show examples of how we improve recommendation accuracy, and reveal the series of steps to improve accuracy for our users with a high BMI!

Model size comparison method

One of the types of recommendations we provide uses a model for size comparisons (the model-size comparison method). This is a method of making size recommendations to customers, using the body measurement of a client-provided model, along with which size fits that model best.

The data is assembled based on a model's physical information as well as the product information on what the model is wearing. This is especially effective for making suggestions for a-typical types of clothing such as: flowy, low-cut, and loose fitting items.

Finding the issue and forming a hypothesis

When comparing measurements using the model- size comparison method, it was found that the *size match rate of Virtusize users with a high BMI, was less accurate than those with a more generic body type. So we decided to review the logic behind the recommendations.

*A look back at changes over the last year and a half, in BMI value and size matching rates, when using the model-size comparison method.

Looking at this graph, the *size match rate decreases, as the BMI increases to 28 or higher. This makes it evident that the model size comparison method, is not very suitable for Virtusize users with a BMI of 28 or higher.

If you take a closer look at "model information" on the product page, used for the model size comparison method, you will find that most of the models are listed as having a standard body shape. This means wearing items such as "S", "M", and "L". However, there isn't a lot of information on models who actually wear sizes larger than that. For example, 2XL or 3XL, which are worn by users with high BMI. But, it is true that finding models to cover all sizes larger than 2XL could be costly and unrealistic for companies.

Because of the limited range of model information that we can obtain, Virtusize has come to the conclusion that internally, we need to apply a different logic to high BMI, users than the model size comparison method. However, as we said at the beginning, the model size comparison method is still a very good recommendation logic for users with general body types! Plus- changing the mechanisms of the entire site at once, ultimately, won't lead to improving the accuracy of the entire site.

Verifying the improvements and the end results

The in-house data science team conducted a study to apply the size comparison method to users with a typical body type, and to apply a different method to users with a high BMI. In the end, we were able to develop a mechanism that applies a different logic to those users instead of applying the model size comparison method.

After applying this new method, a report showed that the *size match rate of users with high BMI, (specifically with a BMI of 28 or higher) improved by up to 20% for each brand.

And even looking at the average of all brands, we can see an overall improvement in accuracy of 5.81%.

Conclusion

Even with this new method, we are continuously working to improve our product with the aim of making, "more accurate size recommendations." This time, we introduced a series of steps to improve accuracy for our users with high BMI, but this is still only one example of our work. We will continue to focus on different issues, and carefully optimize each item, one-by-one, in order to deliver a safe purchasing experience to more people than just users with more common body types.

Virtusize is continuously working to grow and improve. We look forward to showing you what we can do.

*Size match rate: This is a value that serves as our index for measuring the accuracy of the recommendation logic at our company. Of the products purchased after Virtusize was recommended…this is the percentage of products that were purchased in the size that Virtusize recommended first.

Introduction

Accurately recommending sizes on apparel sites plays an important role in improving customer satisfaction. Here at our company, Virutsize, we provide a virtual try-on service with the same name- ``Virtusize.'' It recommends the most suitable size based on product size data and physical information provided by the customer. In order to recommend an accurate size, our in-house data science team verifies results on a daily basis, regularly preforming brush-ups to improve accuracy.

In this article, we will show examples of how we improve recommendation accuracy, and reveal the series of steps to improve accuracy for our users with a high BMI!

Model size comparison method

One of the types of recommendations we provide uses a model for size comparisons (the model-size comparison method). This is a method of making size recommendations to customers, using the body measurement of a client-provided model, along with which size fits that model best.

The data is assembled based on a model's physical information as well as the product information on what the model is wearing. This is especially effective for making suggestions for a-typical types of clothing such as: flowy, low-cut, and loose fitting items.

Finding the issue and forming a hypothesis

When comparing measurements using the model- size comparison method, it was found that the *size match rate of Virtusize users with a high BMI, was less accurate than those with a more generic body type. So we decided to review the logic behind the recommendations.

*A look back at changes over the last year and a half, in BMI value and size matching rates, when using the model-size comparison method.

Looking at this graph, the *size match rate decreases, as the BMI increases to 28 or higher. This makes it evident that the model size comparison method, is not very suitable for Virtusize users with a BMI of 28 or higher.

If you take a closer look at "model information" on the product page, used for the model size comparison method, you will find that most of the models are listed as having a standard body shape. This means wearing items such as "S", "M", and "L". However, there isn't a lot of information on models who actually wear sizes larger than that. For example, 2XL or 3XL, which are worn by users with high BMI. But, it is true that finding models to cover all sizes larger than 2XL could be costly and unrealistic for companies.

Because of the limited range of model information that we can obtain, Virtusize has come to the conclusion that internally, we need to apply a different logic to high BMI, users than the model size comparison method. However, as we said at the beginning, the model size comparison method is still a very good recommendation logic for users with general body types! Plus- changing the mechanisms of the entire site at once, ultimately, won't lead to improving the accuracy of the entire site.

Verifying the improvements and the end results

The in-house data science team conducted a study to apply the size comparison method to users with a typical body type, and to apply a different method to users with a high BMI. In the end, we were able to develop a mechanism that applies a different logic to those users instead of applying the model size comparison method.

After applying this new method, a report showed that the *size match rate of users with high BMI, (specifically with a BMI of 28 or higher) improved by up to 20% for each brand.

And even looking at the average of all brands, we can see an overall improvement in accuracy of 5.81%.

Conclusion

Even with this new method, we are continuously working to improve our product with the aim of making, "more accurate size recommendations." This time, we introduced a series of steps to improve accuracy for our users with high BMI, but this is still only one example of our work. We will continue to focus on different issues, and carefully optimize each item, one-by-one, in order to deliver a safe purchasing experience to more people than just users with more common body types.

Virtusize is continuously working to grow and improve. We look forward to showing you what we can do.

*Size match rate: This is a value that serves as our index for measuring the accuracy of the recommendation logic at our company. Of the products purchased after Virtusize was recommended…this is the percentage of products that were purchased in the size that Virtusize recommended first.

Up next

オンライン試着のVirtusizeが独自分析!2024年AWアイテムの初動

バーチャル試着の「Virtusize」、ナチュラルな暮らしとおしゃれのセレクトショップ【ナチュラン】へ提供開始

バーチャル試着の「Virtusize」、サステナブルファッションをミッションにするセレクトショップ【HIRYU】へ提供開始

【Safari Lounge】Virtusize比較機能の利用/非利用でCVRに約9倍もの差がついています!

靴のオンライン試着サービス「Virtusize for Shoes」、対象カテゴリ「サンダル」を新たに追加

人気アイテムをベースにしたレコメンドサービスをトップページに表示できるようになりました!

「理想のファッションに出会える」
ECサイトをビジネスの強みにしませんか?

お問い合せ